The Pinocchio Rex.

0507-pinnochio-rex_full_600
Scientists have discovered a new species of dinosaur that belonged to the same family as Tyrannosaurus rex.
The remains of the long-snouted tyrannosaur, formally named Qianzhousaurus sinensis and nicknamed Pinocchio rex, were found near the city of Ganzhou in southern China. Researchers believe the animal was a fearsome carnivore that lived more than 66 million years ago during the late Cretaceous period.
The bones were discovered on a construction site by workmen who took them to a local museum.
Experts from the Chinese Academy of Geological Sciences and the University of Edinburgh then became involved in examining the remains.
With an elongated skull and long, narrow teeth, the predator would have looked very different from a T rex, which had thick teeth and more powerful jaws.
Palaeontologists had been uncertain about the existence of long-snouted tyrannosaurs.
Previously, just two fossilised tyrannosaurs with elongated heads had been found, and since they were juveniles it was unclear whether they were from a new class of dinosaur or simply at an early growth stage.
It is thought that Qianzhousaurus sinensis lived alongside other tyrannosaurs but would not have been in direct competition with them, since they probably hunted different prey.
Experts at the University of Edinburgh said the new specimen was of an animal nearing adulthood. It was found largely intact and “remarkably well preserved”.
Read on via Pinocchio rex: new dinosaur species discovered in China | Science | The Guardian.

The Punkosaur, small and Bristly.

storymaker-tiny-veggie-dinosaurs-1210030
This stylish dinosaur predated the punk movement by 200 million years. Pegomastax africanus had sharp bristles and stabbing, self-sharpening fangs.
Its remains were chipped out of red rock from South Africa.
The 2-foot-long dino weighed less than a modern house cat in the flesh. But Paul Sereno, a paleontologist and professor at the University of Chicago, believes it was a plucky survivor.
“I think the bristles would have made it look at least a little bigger than it was — perhaps they could poke out more strongly when excited,” he said.
via 10 Unbelievable Dinos That Really Existed : Discovery News.

Great Paleoart by Csotonyi and Nicholls.

hero_shotThe works of Julius Csotonyi and Robert Nicholls feature in the book Dinosaur Art: The World’s Greatest Paleoart, images from which are found in the attached gallery.
Julius T. Csotonyi is a freelance natural history illustrator and palaeoartist based in Canada.
He has worked with many major museums and book publishers, including the National Geographic Society and the Royal Tyrrell Museum of Palaeontology.
His work encompasses dinosaurs and other prehistoric life, as well as living animals,

Capture

Robert Nicholls is a UK-based artist who produces unique and exciting palaeontological and archaeological artworks.
His illustrations, murals and 3D models are exhibited in many universities, museums, theme parks and attractions worldwide and appear in numerous books and journals.
Read on via Q&A: The world’s greatest palaeoart – Australian Geographic.

Wendiceratops the Horned Dinosaur.

1333423745358311338Wendiceratops roamed southern Alberta around 79 million years ago, when the area was a lush lowland on the western edge of a seaway covering the middle of North America.
Parts of at least four Wendiceratops were found together, including a mix of younger and older animals. None are complete, but enough is preserved to allow a fairly detailed reconstruction of the overall anatomy.
Wendiceratops is unique among horned dinosaurs in the configuration of the forward-hooked bones studding the back of the frill. Each species has its own “fingerprint” of frill bones, so it’s pretty easy to pick out Wendiceratops from the crowd of its close relatives.
1333423745512070826
To me, it’s quite interesting that the frill of Wendiceratops is similar (but not identical) to an animal called Sinoceratops, which lived a few million years later in China. This suggests a close evolutionary relationship between the two animals.
Does it mean that Wendiceratops or one of its descendents wandered over to China from North America?
That’s certainly possible, and warrants additional study. Horned dinosaur skulls are developmentally plastic, so it’s also possible that the anatomy in Sinoceratops was independently evolved. We’ll need more fossils to figure this out!
Introducing Wendiceratops, a Spectacular New Horned Dinosaur
Skeletal reconstruction of Wendiceratops, with known bones shown in blue.
Like many of its close relatives, Wendiceratops had a big nose horn.
This in itself is not unusual, but within geological time Wendiceratops is the oldest horned dinosaur to have the feature. Paleontologists have suspected for awhile that enlarged nose horns evolved at least twice in horned dinosaurs (once in the line leading to Triceratops and once in the line leading to Wendiceratops and its relatives…and maybe a third time in the “primitive” Protoceratops).
Now we know a little more about the timing! Fossils like Wendiceratops add critical details to the broad-brush evolutionary picture.
Wendiceratops (named in honor of its discoverer, Wendy Sloboda.
This article originally appeared at PLOS Blogs and is republished here under a creative commons license. Image credits: Danielle Dufault via Evans and Ryan, 2015.
via Introducing Wendiceratops, a Spectacular New Horned Dinosaur.

Why Did Dinosaurs evolve Feathers?

A-bird---a-crimson-rumped-010

Birds and feathers are synonymous now, but what prompted their evolution?
Photograph: Rodrigo Buendia/AFP/Getty Images
by Dr Dave Hone
A common creationist canard is the supposedly unanswerable “what use is half a wing?”.
Apparently there to confound biologists, what it generally does is demonstrate the ignorance of the asker with respect to evolutionary theory. However, the actual broader question that is inferred – what use is a feather to a non-flying bird? – is both relevant and interesting.
The earliest filamentous feathers appeared in dinosaurs well before birds ever did, and were present in plenty of species that had no hope of taking to the air (though I for one would love to see a flying tyrannosaur).
So then, what might their original function have been, and what prompted them to be maintained, grow larger and change over time?
The exact answer is sadly unknown. It is likely a number of factors in concert, or different ones having greater importance over others at various times, and piecing those fragments together is very tricky.
However, there are some strong leads and ideas, and for some feather types in some groups the answer is rather convincing.
To deal with the central issue though, there are in fact various things that feathers may offer animals aside from flight alone.
A quick look at living birds reveals plenty of possibilities, and almost all of them may be applied to various (or even all) dinosaurs that preceded true, powered flight.
There really are quite a few, so I’ll try to be brief, but it shows just how many selective pressures may have acted on feathers and led to their spread and development across the various dinosaurs that had them.
Read more via Why did dinosaurs evolve feathers? | Science | The Guardian.

The Curious Case of the T-Rex Footprint.

trex-footprint-770x427
It was Professor Phil Manning who discovered the first known Tyrannosaur footprint in the Hell Creek formation in Montana.
He’d seen it on the last day of an expedition in 2006 but did not have the time to investigate further, so he returned the following year and began to search for it all over again.
It is rather unremarkable to look at and unless you knew what you were looking at you wouldn’t notice it.
Rather thinner than one would expect a foot to be, the toes only just joined to the main foot and it is raised in profile rather than indented.
And it is much darker than the rock around it.
It measures around 29 inches long and similarly wide and was formed when a T-Rex walked in the clay of a flood plain, compressing it enough that it became tougher than the rock surrounding it and so it survived, just, when the rock around it eroded.
_44166558_trex_grab416
As well as the footprint itself being the right size and shape for a T-Rex, the other compelling evidence that this is genuinely from a T-Rex is that it was discovered right where it is known T-Rex died, and therefore lived.
One that was claimed to have been found in Mexico was disputed and dismissed as there was no sign anywhere near it that T-Rex was ever there.
Now one has been found, others will come to light but considering the timescale it is astounding that even one survives.
via Historical Honey The Curious Case of The T-Rex Footprint » Historical Honey.